My Website

January 2018- IEEE Access article on reconfigurable VO2 filters

ABSTRACT:This paper proposes and validates a new principle in coplanar waveguide (CPW) bandstop filter tuning by shortcutting defected ground plane (DGS) inductor shaped spirals to modify the resonant frequency. The tunable filter is fabricated on a high-resistivity silicon substrate based on a CMOS compatible technology using a 1 µm × 10 µm long and 300 nm thick vanadium oxide (VO2) switch by exploiting its insulator to metal transition. The filter is designed to work in Ka band with tunable central frequencies ranging from 28.2 GHz to 35 GHz. The measured results show a tuning range of more than 19 %, a low insertion loss in the neighboring frequency bands (below 2 dB at 20 GHz and 40 GHz in on/off-states) while a maximum rejection level close to 18 dB in off-state, limited by the no RF-ideal CMOS compatible substrate. The filter has a footprint of only 0.084 · λ0 × 0.037 · λ0 (where λ0 represents the free space wavelength at the highest resonance frequency) thus making it the most compact configuration using CPW DGS structures for the Ka frequency band. In addition, a more compact filter concept based on the Peano space filling curve is introduced to increase the tuning range while minimizing the DGS area.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 737109 (PHASE-CHANGE SWITCH).